Shortest Paths

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Path Problem

- Given a weighted graph and two vertices \boldsymbol{u} and \boldsymbol{v}, we want to find a path of minimum total weight between u and v.
- Length of a path is the sum of the weights of its edges.
- Example:
- Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations

Shortest Path Properties

Property 1 :

A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices

Example:

Tree of shortest paths from Providence

DIJKSTRA's Algorithm

- The distance of a vertex v from a vertex s is the length of a shortest path between s and v
- Dijkstra's algorithm computes the distances of all the vertices from a given start vertex s
- Assumptions:
- the graph is connected
- the edges are undirected
- the edge weights are nonnegative
- We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices
- We store with each vertex \boldsymbol{v} a label $d(v)$ representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices
- At each step
- We add to the cloud the vertex \boldsymbol{u} outside the cloud with the smallest distance label, $\boldsymbol{d}(\boldsymbol{u})$
- We update the labels of the vertices adjacent to \boldsymbol{u}

Edge Relaxation

- Consider an edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{z})$ such that
- u is the vertex most recently added to the cloud
- z is not in the cloud
- The relaxation of edge \boldsymbol{e} updates distance $d(z)$ as
 follows:
$d(z) \leftarrow \min \{d(z), d(u)+$ weight $(e)\}$

EXAMPLE

EXAMPLE (CONT.)

DIJKStRA's Algorithm

- A priority queue stores the vertices outside the cloud
- Key: distance
- Element: vertex
- Locator-based methods
- insert(k, e) returns a locator
- replaceKey(l,k) changes the key of an item
- We store two labels with each vertex:
- Distance (d(v) label)
- locator in priority queue

```
Algorithm DijkstraDistances(G, s)
    Q}\leftarrow\mathrm{ new heap-based priority queue
    for all v}\inG.vertices(
        if }v=
        setDistance(v, 0)
        else
            setDistance(v,\infty)
        l\leftarrowQ.insert(getDistance(v),v)
        setLocator(v,l)
    while \negQ.isEmpty()
        u}\leftarrow\mathrm{ Q.removeMin()
        for all e G.incidentEdges(u)
            { relax edge e }
            z}\leftarrowG.opposite(u,e
            r}\leftarrowgetDistance(u)+weight(e
            if r<getDistance(z)
                setDistance(z,r)
                Q.replaceKey(getLocator(z),r)
```


ANALYSIS

- Graph operations
- Method incidentEdges is called once for each vertex
- Label operations
- We set/get the distance and locator labels of vertex $\boldsymbol{z} \boldsymbol{O}(\operatorname{deg}(z))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- The key of a vertex in the priority queue is modified at most deg(w) times, where each key change takes $\boldsymbol{O}(\log n)$ time
- Dijkstra's algorithm runs in $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$ time provided the graph is represented by the adjacency list structure
- Recall that $\boldsymbol{\Sigma}_{\boldsymbol{v}} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$
- The running time can also be expressed as $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ since the graph is connected

Extension

- Using the template method pattern, we can extend Dijkstra's algorithm to return a tree of shortest paths from the start vertex to all other vertices
- We store with each vertex a third label:
- parent edge in the shortest path tree
- In the edge relaxation step, we update the parent label

Algorithm DijkstraShortestPathsTree (G, s)

```
for all v\inG.vertices()
```

setParent (v, \varnothing)
for all $e \in$ G.incidentEdges(u)
$\{$ relax edge \boldsymbol{e} \}
$z \leftarrow$ G.opposite(u,e)
$r \leftarrow$ getDistance $(u)+$ weight (e)
if $r<$ getDistance (z)
setDistance (z, r)
setParent (z, e)
Q.replaceKey(getLocator(z),r)

Why Dijkstra's Algorithm Works

- Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.
- Suppose it didn't find all shortest distances. Let F be the first wrong vertex the algorithm processed.
- When the previous node, D, on the true shortest path was considered, its distance was correct.
- But the edge (D,F) was relaxed at that time!

- Thus, so long as $d(F) \geq d(D)$, F^{\prime} s distance cannot be wrong. That is, there is no wrong vertex.

Why It Doesn’t Work for NegativeWeight Edges

- Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.
- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.

C's true distance is 1 , but it is already in the cloud with $d(C)=5$!

Bellman-Ford Algorithm

- Works even with negativeweight edges
- Must assume directed edges (for otherwise we would have negative-weight cycles)
- Iteration i finds all shortest paths that use i edges.
- Running time: O(nm).
- Can be extended to detect a negative-weight cycle if it exists
- How?

```
Algorithm BellmanFord(G,s)
    for all v\inG.vertices()
        if }v=
        setDistance(v, 0)
        else
            setDistance(v, \infty)
    for}i\leftarrow1/\mathrm{ to }n-1\mathrm{ do
        for each e eG.edges()
            { relax edge e}\boldsymbol{e
            u\leftarrowG.origin(e)
            z}\leftarrow\mathrm{ G.opposite(u,e)
            r\leftarrowgetDistance(u)+ weight(e)
            if r<getDistance(z)
                setDistance(z,r)
```


Bellman-Ford Example

Nodes are labeled with their $\mathrm{d}(\mathrm{v})$ values

DAG-based Algorithm

- Works even with negative-weight edges
- Uses topological order
- Doesn't use any fancy data structures
- Is much faster than Dijkstra's algorithm
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$.

```
Algorithm DagDistances(G,s)
    for all v\inG.vertices()
        if }v=
        setDistance(v, 0)
        else
            setDistance(v, \infty)
    Perform a topological sort of the vertices
    for }u\leftarrow1\mathrm{ to }n\mathrm{ do {in topological order}
    for each }e\inG.outEdges(u
            { relax edge e}
            z}\leftarrowG.opposite(u,e
            r\leftarrowgetDistance(u)+weight(e)
            if r<getDistance(z)
                setDistance(z,r)
```


DAG Example

Nodes are labeled with their $\mathrm{d}(\mathrm{v})$ values

All-Pairs Shortest Paths

- Find the distance between every pair of vertices in a weighted directed graph G.
- We can make n calls to Dijkstra's algorithm (if no negative edges), which takes $\mathrm{O}(\mathrm{nmlog} \mathrm{n}$) time.
- Likewise, n calls to Bellman-Ford would take $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$ time.
- We can achieve $O\left(n^{3}\right)$ time using dynamic programming (similar to the Floyd-Warshall algorithm).

Algorithm AllPair (\boldsymbol{G}) \{assumes vertices 1,..., $\boldsymbol{n}\}$ for all vertex pairs (i, j)
if $i=j$
$D_{0}[i, i] \leftarrow 0$
else if (i, j) is an edge in G
$D_{0}[i, j] \leftarrow$ weight of edge (i, j)
else
$D_{0}[i, j] \leftarrow+\infty$
for $k \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
$D_{k}[i, j] \leftarrow \min \left\{D_{k-l}[i, j], D_{k-1}[i, k]+D_{k-1}[k, j]\right\}$
return D_{n}

